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Abstract-A new method for implementing classical multi-yield-surface theory using the kinematic
hardening rule of Mroz is proposed, in which a response formula describing initial loading is
introduced, and further unloading and reloading response is then found by applying a trans­
formation to the stress state variables involved in the initial loading formula. The validity of the
new formulation is supported by previous experimental results for biaxial cyclic nonproportional
loading. The rules governing the response behavior under arbitrary loading paths also serve as a
generalization of the Masing model for one-dimensional hysteresis and they provide instructive
insight into material behavior in cyclic plasticity, such as the property of erasure of memory.
Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

1.1. One-dimensional hysteretic models
Numerous models have been proposed for one-dimensional nonlinear hysteretic response
behavior of structural systems subject to arbitrary dynamic loading. These include the
bilinear hysteretic model, the distributed-element model (Iwan, 1966), the Masing models
(Jayakumar, 1987), the Bouc-Wen model (Wen, 1976,1980), the Ozdemir model (1976),
and so forth. The development of these hysteretic models has been primarily motivated by
the desire to model the dynamic response of structures subjected to severe shaking from
earthquakes. Of course, the earthquake response of real structures involves multi-axial
cyclic plasticity. For this and other reasons, there has been much interest in developing
constitutive models that can adequately predict multi-dimensional elastic-plastic response
behavior of real materials and structures under arbitrary load paths.

Some researchers have attempted to extend the 1-0 (one-dimensional) hysteretic
models to the multi-dimensional case but this has proved to be a challenging task. For
example, Park et al. (1986) proposed a 2-D (two-dimensional) hysteretic model for random
vibrations of structures subject to biaxial excitations, which is an extension of the well­
known 1-0 non-deteriorating Bouc-Wen model (Wen, 1976). An important advantage of
the 2-D Bouc-Wen model is that it is versatile and amenable to analytical treatment, and
thus can be applied to systems of considerable complexity and under random excitation.
However, the biaxial model inherits the disadvantage of the 1-0 model which exhibits
unstable drift under biased small cyclic excitations (Jayakumar, 1987), and so violates
Drucker's postulates of stability (Sandler, 1978). In addition, there is another unrealistic

4239



4240 Dar-Yun Chiang and J. L. Beck

response feature inherent in the 2-0 model, since under proportional (displacement) load­
ing, the biaxial restoring force response is also proportional at all times, even if the response
is in the plastic state. This behavior is not consistent with the theory of plasticity or
experimental observations.

Recently, Graesser and Cozzarelli (1991) presented a systematic procedure for extend­
ing a 1-0 model of hysteresis to a multi-dimensional tensorial representation provided that
the model behavior is governed by simple power laws. In particular, they considered the
generalization of the 1-0 Ozdemir hysteretic model (Ozdemir, 1976). It can be easily shown,
however, that this model is actually a special case of the Bouc-Wen model (Jayakumar,
1987), and hence it exhibits the same unstable behavior as mentioned earlier. As a result,
the extended multi-dimensional model inherently exhibits unrealistic behavior, and again
Orucker's postulates of stability are violated. The inconsistency of these generalized models
(Bouc-Wen and Ozdemir models) with real behavior can be attributed partly to their
simplified mathematical formulation and partly to lack of a physical basis.

Among the 1-0 hysteretic models for structural dynamic analysis, the distributed­
element model (OEM), introduced by Iwan (1966), can be thought of as physically motiv­
ated since it consists of an assemblage of simple ideal elasto-plastic elements. Recently, the
OEM has been successfully extended to the multi-dimensional case so that it can be
used for constitutive modeling of cyclic plasticity (Chiang and Beck, 1994a, b). While the
formulation of the multi-dimensional OEM provides a useful and realistic way for analysis
of general multi-axial cyclic response behavior, efficient numerical implementation of the
theoretical formulation requires that only a limited number of elements be introduced,
since the model response has to be found by keeping track of each element's behavior
throughout the response history.

It has been shown (Jayakumar, 1987) that the 1-0 DEMs actually fall within a general
class of Masing models whose behavior is described by two simple rules which extend
Masing's hypothesis (Masing, 1926) for steady-state hysteresis to arbitrary hysteretic
behavior. The model response can therefore be found directly by employing these two rules
without the need of tracing each element's behavior. An interesting question can then be
raised: can we find mathematical rules similar to those previously used in the 1-0 Masing
models so that general multi-dimensional cyclic response can be found without keeping
track of each element's behavior? If such mathematical rules do exist, then it may be
possible to devise numerical schemes that are more efficient and more accurate than those
based on tracking the behavior of a finite number of distributed elements.

We show in this paper that multi-dimensional plasticity under arbitrary loading can
be modeled in an analogous way to Jayakumar's 1-0 Masing models (1987). A response
formula is introduced to describe initial loading, then further unloading and reloading
responses are found by applying a transformation to the stress state variables involved in
the initial loading formula. The response to arbitrary loading can then be described by two
simple rules. Because of the choice of these rules, the model is equivalent to classical multi­
yield-surface plasticity theory using the Mroz kinematic hardening rule.

1.2. Multi-yield-surface plasticity and the Mroz hardening rule
We give here a brief description of multi-yield-surface plasticity using the Mroz kine­

matic hardening rule (Mroz, 1967). In the formulation to be used, the yield surfaces are
defined in stress space and they move around with the model response so that the current
stress state of the model never lies outside any of the yield surfaces. The Mroz kinematic
hardening rule specifies that the "active" yield surfaces on which the current stress state
lies will translate in the same direction as the line joining the current stress point to that
point on the next outermost yield surface which corresponds to the same direction of
outward normal as that at the current stress point. This rule is sketched schematically in
Fig. I, where the point P is the current stress state on the active yield surface Fm and Q is
the point on the outer surface Fm + I corresponding to the same direction of outward normal.
The translation of the surface Fm (as well as the inner surfaces, such as Fm _ ,) will follow
the direction given by the line PQ. The Mroz hardening rule ensures that the inscribed yield
surfaces have a common tangent at the current stress point. In addition, it has been shown
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Fig. I. The Mroz kinematic hardening rule.
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mathematically that the rule never allows any two yield surfaces to intersect (McDowell,
1989).

It has been shown that a model based on the Mroz hardening rule can exhibit the
observed response behavior of certain metals, such as equilibrium points and limit surface,
while other often-used kinematic hardening rules for plasticity models, such as the Prager
and Ziegler kinematic hardening rules, fail to exhibit such physical properties of response
behavior (Lamba and Sidebottom, 1978). However, while the Mroz rule leads to good
response predictions, its numerical implementation has been thought to be too involved
and inefficient for complicated structural analysis because the positions of all the yield
surfaces must be continuously tracked in the stress space (Lamba and Sidebottom, 1978;
McDowell, 1989).

Krieg (1975) presented a two-surface approach which uses the concept of a loading
surface and a limit surface. In Krieg's model, an analytical function is introduced to replace
the field of several intermediate loading surfaces used by Mroz (1967) in his multi-yield­
surface theory, so that the model can exhibit smooth transition from elastic to fully plastic
state and its numerical implementation is more efficient.

Chu (1984,1987) proposed an efficient model for implementing multi-yield-surface
plasticity based on the Mroz hardening rule. In Chu's model, only the largest yield surface
reached during every continuous loading or unloading path needs to be stored for response
calculations, even though there is a field of continuously-distributed yield surfaces. The
active yield surface, defined as the largest yield surface among those currently translating
with the stress state, determines the instantaneous modulus for calculation of elastic-plastic
response, while the modulus associated with each yield surface is obtained from an assumed
universal stress-strain curve. Although Chu's model serves as an efficient way of implement­
ing classical multi-yield-surface theory based on the Mroz hardening rule, the position of
the active yield surface has to be updated in every loading or unloading step.

In the following, new response formulas based on classical multi-yield-surface theory
with the Mroz hardening rule will be proposed which not only give a plasticity model which
is computationally efficient and accurate but which also provide a generalization of the
Masing models for one-dimensional hysteresis to multi-dimensional cyclic plasticity.

2. GENERALIZED MASING MODELS FOR MULTI-DIMENSIONAL PLASTICITY

Motivated by Masing's hypothesis for l-D hysteresis (Masing, 1926), we propose new
response formulas and rules for modeling of multi-dimensional plasticity. To make the
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ideas clearer, we first introduce Masing's hypothesis and some extended rules that were
proposed for modeling of I-D hysteretic response behavior (Jayakumar, 1987).

2.1. Masing's hypothesis and extended rules for one-dimensional hysteresis
Masing (1926) asserted that if the force-displacement curve for a system at the initial

loading is described by

f(r, x) =0 (1)

where r is the restoring force corresponding to the displacement x of the system, then the
unloading and reloading branches of the steady-state hysteretic response of the system are
geometrically similar to the initial loading curve except for a two-fold magnification, and
are described by

(
r-ro x-xo)f -2-'-2- =0 (2)

where (xo, ro) is the load reversal point for that particular loading branch. Note that the
function f should satisfy

f(-r, -x) =f(r,x) (3)

so that the initial force-deflection curve is symmetric about the origin. The above assertion
is usually referred to as Masing's hypothesis for steady-state cyclic hysteretic response. A
schematic diagram illustrating Masing's hypothesis is shown in Fig. 2.

The model behavior obtained using Masing's hypothesis is consistent with experimental
observations of the Bauschinger effect occurring in some metals. Some properties of
response behavior using Masing's hypothesis were summarized in Jayakumar (1987). One
major concern associated with the original Masing's hypothesis is that it is useful only for
steady-state cyclic response or loading between fixed limits. In the case of non-steady
response, or loading between variable limits, where the response is not cycled around the
same closed hysteresis loop, the hypothesis was considered to be of no help. However,
Jayakumar (1987) proposed an extension of Masing's hypothesis by stipulating the fol­
lowing two general hysteresis rules so that simple and physical behavior for arbitrary
hysteretic response can be obtained.

Rule 1: Incomplete loops. The equation ofany hysteretic response curve can be obtained
by applying the original Masing rule to the virgin loading curve using the latest point of
loading reversal.

r

Fig. 2. Masing's hypothesis for cyclic hysteretic loops.
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Fig. 3. Hysteretic loops for arbitrary response.
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Consider, for example, the hysteretic loops shown in Fig. 3. If the virgin loading curve
OA is characterized by eqn (1), then applying Rule 1, the equation for the branch curve
CD will be

(
r-rcx-Xc)f ~2~'-2- =0 (4)

Based on this equation, it is easy to show that if the reloading curve CD in Fig. 3 had been
continued, it would have formed a closed hysteresis loop given by ABCDA.

Rule 2: Completed loops. The ultimate fate of an interior curve under continued loading
or unloading is such that once it crosses a curve described in a previous load cycle, the
force-deformation curve follows that of the previous cycle.

Based on Rules 1 and 2, if the unloading curve DE in Fig. 3 is continued, it will reach
point C and then follow the extension of the curve ABC given by Rule 1.

An effective algorithm for numerical implementation of these extended Masing rules
was proposed by Thyagarajan (1989), in which two load reversal points are removed from
the memory list each time an interior response curve crosses a curve described in a previous
load cycle. It has been shown (Jayakumar, 1987) that the hysteretic behavior of a dis­
tributed-element model (Iwan, 1966) can be completely described by these rules without
the need of tracing each element's behavior. A special class of Masing models has been
applied to system identification studies using inelastic pseudo-dynamic test data from a
full-scale, six-story steel structure (Jayakumar and Beck, 1988).

2.2. Response formula for initial loading
To find mathematical rules similar to Masing's hypothesis for governing response

behavior in multi-dimensional cyclic plasticity, one has to first introduce a formula descri­
bing the response to an initial loading, and then find corresponding rules describing sub­
sequent response behavior. By initial loading here, we mean that no unloading defined
according to the classical theory of plasticity has ever occurred. Recall that different loading
cases for strain hardening materials are defined by introducing a loading function F (O'ij),
which is usually the same as the yield function, so that the cases of loading, neutral loading,
or unloading correspond to

being greater than, equal to, or less than zero, respectively.
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A new response formula for initial loading is proposed here based on the response
behavior of ideal plasticity and the introduction of a "modulus-reduction" function. We
start with the relation between the plastic strain increment vector and the total strain
increment vector in a yielding state of ideal plastic behavior:

{
AO(U) dB ifdF = 0

dBP = o ifdF<O
(5)

where dF is a function of both the current state and the load increment, and the 6 x 6 matrix

(6)

Here the 6 x 1 column vector a is the gradient of F with respect to the stress vector u, that
IS,

(7)

For ideal plasticity, dFis never greater than zero and dF < 0 corresponds to the case where
the response is purely elastic. The assumed stress-strain relation is given in an incremental
form by:

(8)

where ce is the 6 x 6 elastic-modulus matrix. Thus, for model development, we need only
focus on the generalization of the relation between del' and dB.

For the purpose ofdeveloping a general response formula for initial loading, a modulus­
reduction function which signifies the "degree of yielding" can be introduced as

(
F(U))n:2

D(u) = k
II

(9)

where F(u) = k u is the equation of the limit swface associated with the model and it can
assume any appropriate form. F(u) also serves as the loading function controlling the cases
of loading or unloading as defined above. The parameter n is introduced to control the
smoothness of yielding, but the power law could be replaced by other functional forms.
The response formula (5) for ideal plasticity and for initial loading is then modified by
including the modulus-reduction function, so

(10)

The key point is that the modulus-reduction function D(u) replaces a conventional yield
condition and subsequent hardening rules, so that continuous yielding behavior on initial
loading is adequately modeled. Also, the model based on eqn (10) preserves all the equi­
librium points and the limit surface of a perfectly plastic model (Chiang, 1992) so that it
always leads to stable and physically consistent response behavior.

Consider the special case that F(u) = 3J2, where J2 = ~smnsmn is the second invariant of
the deviatoric stress tensor sij' that is, F(u) has the form of the von Mises yield function.
When the response is small, 3J2 « ku, and by eqns (9) and (10), we have del' ~ 0; when
3J2 = k u, the response state reaches the limit surface associated with the model and the
response behavior becomes perfectly plastic as loading is continued, since then D(u) = 1 in
eqn (10).
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A special case used later in the applications is biaxial tension-torsion involving axial
stress and strain, (J and c;, and shear stress and strain, t and y. Equation (10) gives in this
case:

dc;P = Ca[Eadc;+aGrdy]

dyP = aCr[E(Jdc;+aGrdy]

C = D(a, t)

Ea 2 +a 2 Gt 2
(11 )

where D((J,t) = [((J2+ar2)/a~]n;2 and where (X = 3 or 4 for the von Mises or Tresca yield
function respectively, and au is the ultimate (limit) uni-axial stress.

2.3. Response formulas for unloading and reloading
With the initial loading formula defined in eqn (10), we now want to find appropriate

mathematical rules to govern unloading and reloading response behavior, so that the
complete response history to any multi-dimensional loading path can be calculated. Unload­
ing and reloading correspond to dF < 0 and dF ~ 0 respectively, where F is the same
function as employed in eqn (9).

Masing's hypothesis for 1-D hysteresis implies mathematically that the behavior of the
unloading and reloading response can be found from that of the virgin (initial loading)
response by introducing a proper transformation of the state variables describing the
response. Motivated by this concept and the behavior of a classical multi-yield-surface
model using the Mroz kinematic hardening rule (Fig. 1), we propose the introduction of a
transformation of the state variables involved in the initial loading formula (10), so that
unloading and reloading response can be found from:

(12)

where a' denotes the vector of the transformed stress state, which is a function of not only
the current response state, but also the past history.

To determine the effective transformation required for our purpose, we remark that
for the classical multi-yield-surface model, the yield surfaces reached by the current stress
state must be carried along with the response state in such a way that they all have the
current stress point as a common tangent point. The movement of the yield surfaces along
with the current state is illustrated schematically in Fig. 4, where the circles represent yield
"surfaces" in a 2-D stress space and points A, B denote two instantaneous stress states.
Thus, the response behavior corresponding to the unloading branch from a point B can be
found by transforming the geometrical configuration in Fig. 4(c) back into that in 4(a), so
that eqn (12) can be used effectively for response calculation ofany unloading (or reloading)
branches. Care must be taken in performing the transformations so that not only the
transformation of geometrical configurations is appropriately done, but also the normality
rule for determining increments of plastic strain is preserved (see Appendix).

In the following, we will be concerned only with the 2-D loading case so that we
need only deal with transformations of planar configurations. An effective transformation
formula for "steady-state" cyclic response (i.e., loading between points on the same yield
surface centered at the origin) that is derived from a composition of proper complex-valued
transformations can be found as follows:

, . I, fj -;8(J +l.y IX! = -.--e 4

2 SIll 82
(13)

where (a', r') denotes the transformed stress state, a = 3 or 4 for the von Mises or Tresca
yield function, respectively, and
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T

(a) initial configuration

(b) current stress state A

(c) current stress state B

(j

Fig. 4. Movement of yield surfaces with current stress state moving from A to B; (a) initial
configuration; (b) current stress state A; (c) current stress state B.

(14)

where the principal values are used for the inverse tangents, (0', r) is the current stress state
and (0'0, ro) is the stress state corresponding to the last point of load reversal. The detailed
derivation of the transformation (13),(14) is given in the Appendix where it is explained
how any 2-D yield function can be treated. A simple geometric interpretation for the
transformation is that eqn (13) gives the 0' and r components of the stress vector of the
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shifted 7r plane

0'1

(a) von Mises yield condition

(b) Drucker-Prager yield condition

Fig. 5. Different yield surfaces and shifted n-planes in the principal stress space; (a) von Mises yield
condition; (b) Drucker-Prager yield condition.
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current stress state relative to the center of the active yield surface on which the stress state
lies.

The transformation approach given above is only for the 2-D case. However, it is also
applicable to general multi-dimensional plasticity provided that isotropic materials are
considered and the plastic deformation can be treated as independent, or as some simple
function, of the hydrostatic stress state. Many real materials exhibit approximately these
kinds of behavior, such as metals and soils. In this case, we can always convert a stress
state (which is a symmetric two-tensor) into a corresponding principal stress state (a
diagonal two-tensor) for which the shear stress components vanish, and apply the 2-D
transformations to the stress state projected on a shifted n-plane which is perpendicular to
the hydrostatic axis 0"1 = 0"2 = 0"3 in the principal stress space. This is shown in Fig. 5(a)
and 5(b), in which the circular cylinder and cone represent the yield surfaces corresponding
to the von Mises and Drucker-Prager yield conditions (Bathe, 1982), respectively. A sche­
matic diagram illustrating this idea of transformation on the n-plane is shown in Fig. 6.

2.4. Response rules for arbitrary loading histories
With the initial response formula (10) and the transformation (12)-(14) for unloading

and reloading, we are able to determine the steady-state cyclic response of a system
characterized by multiple yield surfaces without the need to calculate the response of
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mapped

7r plane

7rplane

Fig. 6. Transformation on the n-plane when A' is the image of A.

elements or to trace the motions of yield surfaces. In the general cyclic loading case, we still
need to extend the foregoing formulae, as Jayakumar (1987) did for I-D hysteresis by
extending Masing's hypothesis.

In the I-D case, the response rules were proposed for incomplete and completed
hysteresis loops. In the multi-dimensional case, however, the cyclic loops between fixed
strain points may not be "strictly closed" in general. Here, by "strictly closed" we mean
that a stress-strain loop is closed at a load reversal point so that this point is both the
starting and the ending point of the loop. Based on geometrical considerations of multiple
yield surfaces and the Mroz hardening rule, we can modify the definitions for incomplete
and completed loops and deduce corresponding rules for them in the general multi-dimen­
sional case.

First, we define a half loop as the path between two consecutive load reversals and a
loop as two consecutive half loops. We can then define a completed loop as a loop along
which the outermost yield surface that contains the last two points of load reversal is
reached again during the loading process. Otherwise, the loop is said to be incomplete. For
example, in Fig. 7, the stress response loop ABC is incomplete, while the loop BCE is a
completed one since the outermost yield surface (labelled 2) containing the last two points
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Fig. 7. Illustration of completed loops and numerical difficulty associated with the transformation
approach.
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ofload reversal Band C is reached at E. With these definitions we can propose the following
two rules for arbitrary response.

Rule 1: Incomplete loops. The equation of any response curve can be obtained simply
by using eqn (12) and applying the (1-(1' transformation, as given by eqns (13) and (14),
to the last point of load reversal (0"0' co) and the outermost yield surface on which ((To, co)
lies. (The dependence on the outermost yield surface is described below.)

For example, the response curve CE in Fig. 7 can be found by applying the trans­
formation rule to point C and yield surface 2.

Rule 2: Completed loops. Once the stress state reaches the outermost yield surface on
which the last two load reversals occurred, the transformation rule is switched from the
last point of load reversal to the previous one, along with its corresponding outermost yield
surface.

For example, in Fig. 7, as the loop BCE is completed at E, the transformation rule is
then applied to point B and yield surface 4 for the response that follows. Note that Rule 2
for completed loops is different from that in the I-D case where two points ofload reversal
are erased at a time when an interior curve crosses a curve from a previous load cycle. This
rule for 1-D hysteresis can actually be shown to be a special case of the 2-D rule when only
proportional loading occurs.

We remark that, in the case of arbitrary response, the geometrical configuration of
yield surfaces is different from that of a steady-state case, not only in the position of the
active point of load reversal, but also in that eo in (14) is measured by reference to a new
center point, which may be different from the origin of the stress space. Therefore, the
equation for eo in (14) should be replaced by the more general formula

e -1 (~(co -c.c))
0= tan

(To -(Tc
(15)

where (O"c, cd represents the coordinates of the center of the current reference circle (the
outermost yield surface that the last load reversal point is on) and ((To, co) is the stress state
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T

(a) unloading from point A

T

(J

(b) unloading from point B with new center C

Fig. 8. Geometrical consideration of arbitrary response; (a) unloading from point A; (b) unloading
from point B with new center C.

corresponding to the last load reversal point. This situation is illustrated in Fig. 8. Figure
8(a) shows the process of initial loading from the origin 0 to point A and then unloading
from there. In this case, upon unloading from point A, the current reference circle is
centered at the origin of the stress space. Figure 8(b) shows the geometrical configuration
corresponding to unloading from point B, where 80 is given by (15) with (ao, To) = (an, Tn)
and where point C represents the center of the current reference circle. The coordinates of
the new center point C are given by

(16)

where rA and rn denote the radii of the outermost "active" circles on which points A and B
lie respectively, and (ae, Te) represents the coordinates of the center of the previous
reference circle. (C coincides with the origin 0 for the case in Fig. 8.)

Based on the preceding rules, numerical implementation of the foregoing algorithm
requires that for each point of load reversal, the yield constant (radius) and the coordinates
of the center point of the outermost yield surface on which the reversal point lies both be
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stored in a list. Every time the yield surface with the smallest yield constant in the memory
list is again reached, its corresponding point of load reversal and center of reference is
erased from the memory.

While the mathematical manipulation involved in the above approach based on trans­
formation formulas is simple and effective, a major problem of implementing the above
rules for arbitrary response exists. This problem is associated with the numerical ill­
conditioning which occurs when the response formulae are applied to states near the points
ofload reversal, which are singular points of the corresponding transformations employed,
as can be deduced from the derivation of the transformation formulas. To illustrate this,
we consider the following example. When unloading occurs from a point, say the point B
or C in Fig. 7, the loading function, F(al

), at any point on curve BC or CE is computed by
reference to the corresponding unloading point B or C. After a loop is completed, such as
the loop BCD or BCE in Fig. 7, the loading function value at D or E should be calculated
by reference to the previous unloading point B, according to the Rule 2 stated above.
However, when the point at which a loop is completed is very close to the previous unloading
point (such as point D in Fig. 7 which is close to point B), due to the singular behavior of
the transformation at a load reversal point, the loading function value cannot be found
accurately. In other words, the calculation of a l from the transformation formulas is
numerically ill-conditioned.

A remedy for dealing with this problem is that the two latest points of load reversal,
instead of just one (Rule 2), will be erased every time a loop is completed if the current
loading function value with reference to the previous point of load reversal is found to be
considerably less than the yield constant of the active yield surface on which the latest point
of load reversal lies. For example, in Fig. 7, the points D and E, which both lie on yield
surface 2, should have the same loading function value, say F2• But due to the singular
behavior around the load reversal point B, the loading function value at D may be found
numerically to be much less than F2, e.g., if point D coincides with (or is very close to) the
load reversal point B, the loading function value will be found to be zero there. In this case,
we may erase two latest points of load reversal, i.e., Band C in Fig. 7, so that the active
load reversal point becomes A and then the loading function value at D with reference to
A will be found to be about F4 (corresponding to yield surface 4), which is correct for
continued response from D. On the other hand, if the response curve goes from C to Eat
which the loading function value with reference to point B is close to the loading function
value F2 of the active yield surface 2, then only one point of load reversal (point C) will be
removed from the memory.

The above rules for the sub-cycling type of behavior have features which are similar
to those proposed by Chu (1984). However, with the transformation technique introduced
above, there is no need to keep track of the movement of the active yield surface in every
loading step. Instead, only the position of the active yield surface corresponding to each
load reversal state is required. This feature that the current reference yield surface in the
proposed model is unchanged between two consecutive load reversal states alleviates the
problem of error accumulation that might be experienced in the numerical implementation
of Chu's model.

3. SIMULATION STUDIES

Based on the classical formulation of ideal plasticity and multi-yield-surface theory,
we have derived a class of "generalized Masing models" for multi-dimensional cyclic
loading based on the response formula (10) for initial loading, together with the trans­
formation formulae (12)-(14), and the two rules governing the rest of a response history.
It is of interest to examine the performance of such a model that is actually composed of
an infinite number of yield surfaces moving in the stress space according to the Mroz
kinematic hardening rule. In the following, the model performance will be evaluated under
some biaxial tension-torsion loading conditions for which experimental results are available
for comparison from the literature.
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Fig. 9. Prescribed strain loading paths for response studies of the proposed generalized Masing
model (from Lamba and Sidebottom, 1978).

Lamba and Sidebottom (l978a, b) conducted a series of biaxial tension-torsion tests
on thin-walled copper tubes in which cyclic, nonproportional axial-torsional strain paths
were applied to examine material response behavior after the material had been cyclically
stabilized. Two of the prescribed strain loading paths are shown in Fig. 9, and the cor­
responding experimentally-observed stress responses are shown in Figs 10 and II. Note that
the loading path sequence in Fig. 9(a) is 0-1-0-2-0-3-0- ... , so as to study the property of
"erasure-of-memory" (Lamba and Sidebottom, 1978a; Chiang, 1992; Chiang and Beck,
1994a, b). Also, the stress path resulting from the repetition of path 0 each time is not
plotted in Fig. 10(a) for clarity.

The results of response predictions using a generalized Masing model for the prescribed
strain paths are shown in Figs 12 and 13, where both Tresca's and von Mises' yield criteria
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Fig. 10. Experimentally-observed stress response of copper to the prescribed strain path given in
Fig. 9(a) (from Lamba and Sidebottom, 1978).

have been used in the modulus-reduction function as in eqn (11). In the simulations,
the model parameters used were E = 16,700 ksi, v = 0.33, (Ju = 30 ksi, and n = 2.5. The
experimental results and simulations are for cyclically stabilized behavior, so the parameter
k u (=(J~ here) in the modulus-reduction function of eqn (9) is taken as a constant. The
model could be extended to cyclically hardening or softening processes by taking k u as an
appropriate experimentally-determined function of the plastic work or the accumulated
plastic deformation.

A comparison between the model predictions and the experimentally-observed results
(Figs 10 and 12, and Figs 11 and 13), leads to the following remarks. It is immediately
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Fig. II. Experimentally-observed stress response of copper to the prescribed strain path given in
Fig. 9(b) (from Lamba and Sidebottom. 1978).

recognized that the response behavior described by the initial loading formula (11) and the
transfonnation rules I and 2 is in good agreement with the experimental results in almost
every aspect. Tresca's yield condition leads to a slightly better result than von Mises' yield
condition for the value of the ultimate shear stress predicted, but for both yield conditions,
transition from the elastic regime to the plastic regime is smooth and well-behaved, and the
complicated biaxial Bauschinger effect is also well accounted for. Moreover, the model
behavior clearly shows the existence of equilibrium points and a limit surface, as well as
the property of erasure of memory (e.g., in Fig. 12, every time strain path 0 in Fig. 9(a) is
followed, the model always ends up with the same stress state regardless of what the previous
history was). A comparison of the predictions of Chu's model with the experimental results
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Fig. 12. Stress response predicted by a generalized Masing model subject to the prescribed strain
path given in Fig. 9(a) (Tresca -~, von Mises ---).

for the same strain loading path as shown in Fig. 9(a), shows that these latter features are
not exhibited by her model (Chu, 1987).

The physical consistency and excellent accuracy of the model in response prediction
may be attributed to the adequate response formulas which utilize the concept of a limit
surface, an uncountably infinite number of yield surfaces and the well-formulated Mroz
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Fig. 13. Stress response predicted by a generalized Masing model subject to the prescribed strain
path given in Fig. 9(b) (Tresca --, von Mises ---).

kinematic hardening rules. In addition, the computational effort in making response pre­
dictions based on the above response-formula approach is very low. The numerical efficiency
of the model is due to the proposed transformation method which avoids the costly
bookkeeping involved in moving multiple yield surfaces around in the stress space.
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4. CONCLUSION

A class ofgeneralized Masing models for cyclic plasticity is proposed based on a plane­
geometry transformation method. A response formula valid for initial loading is introduced
by considering the behavior of ideal plasticity and introducing a modulus reduction function
which utilizes the concept of a limit surface. The proposed transformation method, when
combined with appropriate response rules proposed for different loading branches, not
only gives good predictions of the biaxial behavior of thin-walled copper tubes but also
gives better insight into material behavior in cyclic plasticity, such as the property oferasure
of memory. Furthermore, this new method provides an efficient way of implementing
classical multi-yield-surface theory with the kinematic hardening rules of Mroz, as well as
providing a unified concept for generalizing l-D hysteresis to multi-dimensional plasticity.

Acknowledgement~The authors wish to thank an anonymous reviewer for pointing out the earlier work done
by c.-c. Chu.
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APPENDIX: DERIVATION OF TRANSFORMATION FORMULAE

In the following, we derive the transformation in eqns (13) and (14) using classical multi-yield-surface theory
based on the Mroz kinematic hardening rule. In the derivation, we assume that the yield surfaces in the 2-D (J-,

stress space can be represented by circles which are initially concentric. This, however, need not put any limitation
on applications, since according to the well-known Riemann Mapping Theorem, a simply-connected region of
arbitrary shape can always be mapped onto a circular region through a mapping conformal on its interior. The
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Fig. A.I. Geometrical configurations before and after transformation.

same theorem has also been extended to the case where a region bounded by two simple closed curves, one inside
the other, is mapped into a region bounded by two concentric circles (SpiegeL, 1964). Therefore, the yield surfaces
in the 2-D space can be of any shape and the derived transformation can still be employed, as long as a conformal
mapping can be found so that the yield surfaces can be transformed into circles.

In order to employ the same response formuLa (e.g., eqn (10)) for all response branches in the multi­
dimensional case, the stress state variables tT invoLved in the response formula should be modified by a suitable
transformation, as suggested by Masing's hypothesis for cyclic hysteretic response in the 1-0 case. The trans­
formation must be able to characterize the different response branches so as to appropriately reflect the behavior
corresponding to different Loading conditions.

Consider the two response situations in Fig. A.I (a) and (b), in which the multi-dimensionaL yielding behavior
is accounted for by classical multi-yieLd-surface theory with the Mroz kinematic hardening ruLe. The idea proposed
here is that if we can find a transformation formuLa that maps the geometrical configuration in Fig. A.I (a) to that
in A.I (b), then we can use the initial-loading response formula to describe the response corresponding to
subsequent unLoading or reloading branches. To transform the geometrical configuration in Fig. A.I (a) to that in
Fig. A.I (b), we introduce a series of complex-valued mappings as follows:

(I)
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Fig. A.2. Configurations at different transformation stages.

This mapping is a translation of Uo + iTo, as defined in Fig. A.I (a), so that the unloading point A gets mapped
to the origin in the w, plane.

(II)

The second mapping is a counterclockwise rotation of n/2-eo, where en is defined in Fig. A.I (a). After the
two transformations w" Wb the geometrical configuration in the z plane (Fig. A.I (a)) is mapped onto that in the
lV, plane, as shown in Fig. A.2(a).

2
~V1 = -; (lV3 =(J3 +ir J =r3eiH.1)

- Hl2
(Ill)

This mapping maps the circles in the w, plane into horizontal lines in the W] plane, as shown in Fig. A.2(b).

(IV)

This mapping maps the horizontal lines in the w] plane into concentric circles in the W4 plane, as shown in
Fig. A.2(c). It has also been chosen so that the direction of a plastic strain increment, which is determined using
the normality principle, is preserved after transformation. To make the idea clearer, let us look at the two plots
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Fig. A.3. Conditions of the principle of normality on the proposed transformation.

in Fig. A.3(a) and (b), which show respectively, the geometrical configurations after and before transformation
for the special case flo = n12. In order to meet the normality rule, we need that the points A, B, C, and D in Fig.
A.3(b) be mapped to A', B', C, and D' in Fig. A.3(a) so that they have exactly the same outward normal direction.
Thus, by geometry we require that

(AI)

where fI is the angle that the outward normals shown in Fig. A.3(b) make with the u-axis. It can be easily shown
that the transformation formula W4 given in (IV) satisfies the conditions required by (AI).

I
w=-: (w=u'+ir')

\t~'4

(V)

The geometrical configuration after this transformation can be found to be just the one shown in Fig. A.I (b),
in which the coordinates of the unloading point A' is the same as those of point A in Fig. A.I (a).

Based on the above, the overall transformation which maps the configuration in Fig. A.I (a) to that in Fig.
A.l(b) can be found to be

1'1 _
ltJ=---e '°4

2sin8,

where
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Equations (13) and (14) are simply these equations together with the appropriate transformation to ensure that
the Von Mises or Tresca yield function gives circles for the yield surfaces in 2-D space.


